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During our further studies on asymmetric autocataly/sisctions Ph,  Me e
in which the chiral product acts as a chiral catalyst for its own NF - CHO HO"  “NMe, v
. . . /j’ (1R,25)-DMNE 3 DBAE 4 .

’ ’ = { 100-x mol%) X mol =
production, we reported that some autocatalytic reactions, for H)\N 00-x mol% {x mol%) N oH
example, the addition of diisopropylzinc tot@rt-butylethynyl- 1 toluene, 0 °C HANI
pyrimidine-5-carbaldehydg occur with an amplification of enan- v iPrzn naphthalene (internal standard) 2

o2

tiomeric excess (ee) of the catalyst/product, so that the final product
has a higher ee than the initial catalyst.

3
Experimental Data

On the other hand, we recently reported that achiral amino . K=0
. .. . . o
alcohols reverse the enantioselectivity of chiral amino alcohols §2° | Keven, volts=0.8
. . . . . L . 3 K=10, vova=0.8
during this autocatalytic reactién.Thus, in association with 12  Ke25.vum08

asymmetric autocatalysis, the two possible absolute configurations g 2| | — k=100, v=1.0

of the pyrimidyl alkanol can be obtained with high enantiomeric ~ & K=1000, vohvs=1.1
excess from a unique chiral catalyst. TypicallyR(2S)-dimethyl- %1.5 :
norephedrine (DMNB) affords R)-alcohol2, whereas$)-alcohol ©
2 is obtained by using a mixture of RI2S)-DMNE and achiral B
N,N-dibutylaminoethanol (DBAH), both enantiomers being formed &
with >98% ee with the same source of chirality (Scheme 1). 05 . . .
o 10 20 30 40 50 &0 70 80 a0 100
Scheme 1 % of DBAE in the Catalytic Mixture
on Me Figure 1 Evolution of th_e re_Iative initial rate of catalysis with th_e
A composition of the catalytic mixture of enantiopure DMNE and achiral
HO' NMe, ,jI DBAE (total amount of catalysts: 100 mol %).
(1R,25)-DMNE 3 )NL\ 'OH
cHo RN [w and the yields of the reactions were measured every 30 s in the
R/‘]‘(‘j’ o e first 5 min by HPLC by using naphthalene as an internal standard.
'14 - HO}—QNM + oo “NBu, Although three possible processes (noncatalyzed, autocatalyzed,
+ iProzZn ua_gs,.m“geé Achiral DBAE 4 N7 0 and amino alcohol-catalyzed formation2)fmay contribute to the
R By a2 (512 (-98% ee) formation of the product, the first two were shown to be negligible

during the first moments of the reaction, due to an incubation period
before asymmetric autocatalysis stdfts.appeared that the reaction
is, under these conditions, first order in amino alcohol and that
achiral DBAE4 is about 2.7 times more active than chiral DMNE
3 (vb = 2.7vy).

Then additional kinetic studies of the reaction catalyzed by
mixtures of chiral DMNE and achiral DBAE in various proportions
were performed in toluene at® to get some information about
the interactions between the two catalysts. The total amount of
amino alcohols (100 mol % in order to minimize experimental

hydes or in the asymmetric autocatalysis, we here report kinetic €70rs) was kept constant. Again, only the first moments of the
and enantioselectivity studies of the reaction that permit evaluation "€action, before asymmetric autocatalysis occurs, were taken in
of the validity of the two models and lead to structural and account, and the measured initial reaction rate corresponds to the

quantitative information about the complex responsible for the cocatalysts activity. The variation of the initial reaction rate with
reversal of enantioselectivity. the composition of the catalytic mixture (plots in Figure 1) shows

Kinetic studies of the addition of diisopropylzinc to aldehyde a strong nonlinearity. The initial rate of the reaction is roughly the
catalyzed whether by enantiopure DMNEor achiral DBAE 4 same as that for the DMNE-catalyzed reaction when the amount
were first performed, with various loadings of catalyst. Toluene, ©f DBAE is lower than the amount of chiral DMNE and increases

in which the reactions are homogeneous, was chosen as a solven®rogdressively when the concentration in DBAE exceeds the
concentration in chiral catalyst. It is worth noting that, in this

* Department of Applied Chemistry. system, the presence c_af the achiral catalyst fastens the reaction,
* Department of Chemistry. contrary to related studiés.

We initially interpreted this reversal as a consequence of
interactions between the two catalysts, which form a catalytically
active aggregate promoting the formation of the opposite enantfémer.
However, it was recently proposed theoretically that in the
hypothesis of a mutual inhibition of the chiral catalyst by the product
of major configuration, and in association with asymmetric auto-
catalysis, a reversal of enantioselectivity may also o&tBecause
both scenarios would imply important mechanistic insights either
in the f-amino alcohol-catalyzed addition of dialkyzincs to alde-
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Scheme 3. Dimeric Catalytic Species Model
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0 20 40 60 80 100 one achiral B), whose respective proportions a, ¢, and b are linked
% of DBAE in the Catalytic Mixture by an association constaKt (Scheme 3). Each of these dimeric
Figure 2. Evolution of the initial enantiomeric excess of the product with COMPIexes is considered to catalyze the reaction with the respective
the composition of the catalytic mixture of enantiopure DMNE and achiral rate v, vp, andyc and enantioselectivity geee, and ee
DBAE (total amount of catalysts: 100 mol %). The initial ratesy, and vy, of the pure DMNE-catalyzed reaction
) ] ) (respectively DBAE-catalyzed) being known, the initial ratef
The enantiomeric excesses of the obtained products (beforeihe yeaction catalyzed by mixtures of the two catalysts can be
asymmetric amplification occurs) were also measured after purifica- cajcylated for various values ok and v.® The best-fitting
tion and depend on the catalytic mixture as shown in Figure 2 simylations were obtained with the hypothesis of a good propensity
(pIo.ts). Age_un, a sharp nonlinearity was observed, pgrtlally_ due t0 g form the heterodimet (K ~ 10—1000) and by considering that
the interactions between the two ca_talysts. The enantiomeric excessnhe mixed aggregate has a similar catalytic activity to that of dimeric
of the product decreases almost linearly from 82% to 1%Ree ( pyNE (vs ~ 0.8-1.1 ) (curves in Figure 1).

configuration) from a 0:100 to 50:50 ratio of ligands (DBAE/  on the other hand, the enantiomeric excess of the product varies
DMNE). When the amount in DBAE exceeds the amount of chiral yth the composition of the catalytic mixture as a function of the
DMNE (ratio > 50:50), §-alkanol 2 is formed with a low but catalytic properties of the mixed aggreg&e(v; and eg) and its

significant enantiomeric excess (up to 5% ee). This observation gccyrrencek).1 The observed reversal of enantioselectivity implies
indicates that the high enantiomeric excess obtained at the end oOfinat the heterodime€ promotes the formation of the opposite

the reaction is mainly due to asymmetric autocatalysis. However, anantiomer to the one produced by the homodideee < 0),
it should be noted that the reversal occurs ebeforeasymmetric g it has also to be considered to have sufficient catalytic activity
autocatalysis occurs, showing that the reversal phenomenon is(yC ~ v,) to fit the partial linearity from a 100:0 to 50:50 ratio of
probably due to an interaction between the two catalysts, as ShOW“Iigands (DMNE/DBAE). The curves shown in Figure 2 greatly
in Scheme 2. correlate with the experimental data and were obtained with the
following hypotheses: (1) heteroassociation is slightly favored
versus homoassociation of the ligands¥ 25—100), (2) the mixed
aggregate is a little less active than the homochiral dingr(
O 0.7-0.82,), and (3) the mixed aggregate yield-@ with moderate
enantioselectivity (ee~ 10—20% for S configuration).

Thus, the present kinetic and enantioselectivity studies are very
consistent with the formation of dimeric catalytic species. Simula-
@ tion of the observed nonlinearity in the rate of the reaction provides

O quantitative information about the catalytic properties of the mixed
aggregate responsible for the reversal of enantioselectivity. The

Scheme 2. Possible Interpretation of Enantioselectivity Reversal

@ } Interaction
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Autocatalysi simulation of enantioselectivity provides an independent means of
@@ confirming and refining the estimated parameters and greatly
corroborates the validity of the postulated moHel.
@ To support our modeék we also performed somab initio

molecular orbital calculations on structurally close species. The total

Thus, at equimolar amounts of the two catalysts a critical change energies of the most stable conformers of monomeric and dimeric
in behavior is observed in both rate and enantioselectivity. Zinc isopropylzinc alkoxides issued from RRS)-DMNE 3 and N,N-
amino alkoxides issued frofftamino alcohols are known for their  dimethylaminoethanol (DMAE) were calculated at the B3LYP/
propensity to form aggregates, particularly dinfefgtive catalysts 6-31G* level. The three dimeric species showeauti 5/4/5 tricyclic
are yet considered to be monomeric, and dimeric species or higherskeleton, in agreement with previous studi¢sThe formations of
aggregates only act as a resenit’ However, this postulate is  the dimeric zinc alkoxide of DMNEA and of the dimeric zinc
not consistent with the observed reversal of enantioselectivity. alkoxide of DMAE (taken as a model of aggreg&gfrom their
Considering a possible interaction between the two catalysts, thesemonomeric forms were shown to be exothermic by 125.8 and 153.3
changes at equimolar amounts of ligands strongly support the kJ/mol of dimer, respectively. Moreover, the formation of the
formation of a catalytically active aggregate bearing the same heterodimerC' (shown in Figure 3) from the homodimers is
molarity of the two ligands, the simpler one being a dimeric exothermic by 11.9 kJ/mol of heterodimer, consistent with the quite
complex. Considering their structural similarities, we postulated that high value ofK estimated from our experiments.

the dimeric forms of DMNE3 and DBAE4 catalyze the reaction In the dimeric heterocomple®’, the chirality present in the chiral
as well. Thus a Kagan-type equilibriérbetween three dimeric  ligand imposes a preferential conformation to the achiral moiety,
catalytic species was considered, two being chitah(id C) and probably for both steric and electronic reasons. It can be rationalized
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Mixed dimer C*

Figure 3. Calculated structure of heterodim&' resulting from the
aggregation of isopropylzinc alkoxides ofR2S)-DMNE 3 and DMAE5

(red, oxygen; gray, carbon; green, zinc; blue, nitrogen; hydrogen atoms are
not shown for clarity).
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